Product Details

Heat Engine Cycle – Wireless

A P-V diagram is generated as a heat engine is taken through a cycle. From this diagram, the heat added to the gas and the work done by the engine are measured to determine the efficiency of the engine. This actual efficiency is compared to the theoretical maximum efficiency.

SKU: EX-5630 Category: Tags: , ,

Share this product

Description

The heat engine consists of air inside a cylinder that expands when an attached can is immersed in hot water. The expanding air pushes on a piston and does work by lifting a weight. The heat engine cycle is completed by immersing the can in cold water, which returns the air pressure and volume to the starting values.

The cycle is performed as follows:
1 With the can in the cold bath, the 200 g mass is placed on the platform.
2 The can is moved from the cold bath to the hot bath.
3 The 200 g mass is removed from the platform.
4 The can is moved from the hot bath to the cold bath.

The change in pressure is measured with a Wireless Pressure Sensor. The change in piston height is measured by the attached string over the Wireless Rotary Motion Sensor pulley. The change in volume is calculated by multiplying the change in piston height by the piston cross-sectional area.

PASCO Advantage: This operating heat engine shows how a difference in temperature can be used to do work. Each part of the cycle is easily identifiable, and the actual efficiency as well as the maximum possible efficiency can be easily determined.

Concepts
Heat engine efficiency
Isothermal processes
Isobaric processes
Ideal Gas Law

What’s Included
1x Heat Engine and Gas Law Apparatus (TD-8572A)
1x Wireless Rotary Motion Sensor (PS-3220)
1x Wireless Pressure Sensor (PS-3203)
2x Wireless Temperature Sensor Link (PS-3222)
2x PASPORT Stainless Steel Temperature Probe (PS-2153)
1x Large Rod Base (ME-8735)
1x Stainless Steel Rod, 90 cm (ME-8738)
1x Mass and Hanger Set (ME-8979)
1x 3-Liter Plastic Tub (2 Pack) (ME-7559)

 

https://www.pasco.com/products/complete-experiments/thermodynamics/ex-5630